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A differential game of approach of one evader with n dynamic pursuers is investigated. Ail the players 

have simple motions, The velocities of the players and the time of the game are limited. The case of a 

game with both similar arbitrary pursuers and pursuers of different types whose velocities exceed that 

of the evader are considered. The payoff is taken to be the distance between the evader and the closest 

pursuer at the instant when the game terminates The fo~al~tion used is the same as that employed 

in [l. 21. The metbod used in [3,4] of solving problems of the approach of two pursuers with a single 

evader in a plane is extended to the solution of the problem of the approach of n pursuers with a single 

evader in space R”. The value function of the game is amstructed not only in a regular region [S], but 

also in a separate singular manifold. A programmed maximin function is introduced, the space of the 

initial positions is decomposed into regions, and the u-stability of the function over the whole of the 

space is proved. An example of a game of pursuit of “three after one” in a t~ee~ime~iona~ Euclidean 

space is given, and the optimal trajectories and the level surfaces of the value of the game are 

constructed. 

1. FORMULATION OF THE PROBLEM 

THE DYNAMICS of pursuers, combined in a coalition, and the dynamics of an evader are describ- 
ed by the following equations 

xi(f)=u&), xt(O)=rF, IIuJi<pf,pj9tl, i=l,n (1.1) 

y*W=tW Y@)=Y*, llvN<ff, irI;Bo, fE[O,TJ, T<=J (1.2) 

Here xi and y are the positions of the pursuers and the evader, respectively, in an n- 
dimensional space, the control ui(.) is formed during the motion of the position strategy Uj : 
T x R” =+ B,(O), the control of the evader is chosen as an arbitrary function of time from the 
class V, of measured functions u(a): Z’* B,(O), where B,(O) and B,(O) are n-dimensional 
closed spheres of radius p and cr with centre at the origin of coordinates, and it(.) Ii is the 
Euclidean norm. The payoff function is the minimum distance between the evader and the 
pursuers at the instant when the game terminates 

where d(x,Q, y(T)) is the Euclidean distance between x,(T) and y(T). 
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The aim of the pursuers is to minimize the payoff function while the aim of the evader is to 
maximize it. 

It is required to construct the function of the guaranteed result. 

2.THEPROGRAMMEDMAXIMINFUNCTION 

The domain of attainability of the players xi(t) and y(t) up to the instant T are n-dimensional 
spheres G: = BfitT_,) (xi(r)) and G, = B,,,.&(f)) of radii p,(T -t) and o(T -2) with centres at 
xi(f) and y(t), respectively. 

We define the programmed maximin function as follows: 

(2.1) 

When t = T the programmed maximin function is identical with the payoff function (1.3). 
Suppose W, is a convex linear hull of the positions k of the pursuers at an arbitrary instant of 

time, and Wk * is that of the k pursuers and the evader at the same instant 

k 

w, = [w: ,dl ajxj, 
i=l 

(2.2) 

where .I, is a non-empty manifold J, of the set of indices I = (1, 2,. . . , n). 
It is convenient to consider only those J, which form W, of dimensions k- 1; then, Lk is a 

subspace equidistant (when p1 = p2 = . . . =p,,) from the k pursuers and has dimensions 
n-k+1 

Lk=11:d(l,Xp)=d(l,xs), pfq,t%qEJk 1 
&mLk =a - dimwk 

(2.3) 

When there are different limitations on the velocities of the pursuers, Lk is a subspace 
orthogonal to W, and containing all extremal aiming points. 

In order for the problem of the pursuit of n pursuers after a single evader in the problem of 
the pursuit of k <n after one to be non-degenerate, it is necessary that dimW, = n -1, 
dimL, = 1. 

A minimum and a maximum of the programmed maximin function is reached at the 
bo~daries of the regions Gi and G,. 

We will call the point y*(r) the point of extremal aiming if the programmed maximin 
function reaches a maximum at this point. The distance from the extremal aiming point to an 
arbitrarv oursuer is made un of the length of the radius of its domain of attainability and a 
certain constant which is ~~-on for 21 the pursuers. By choosing the subspace Jk 
such that a minimum is reached at xi(t), i E J,. we can write (2.1) in the following form 

~(6 xi(O,u (0) = max ITlin d@i(t),Y) - Pi(T - fl= d(Xi(f>, Y * (tH - Pi(T - f, 
yEGt i 

from 1 

(2.4) 
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3. POSSIBLE CASES OF THE MUTUAL POSITION Or; THE PLAYERS 

At each instant of time t the evader y(t) may be in one of several regions Dk (k = 1, 2, . . . , n) 
relative to the pursuers q(t), where the problem degenerates into a game of pursuit by only k 
players. 

We will define the region to which y(t) belongs of the region Dk by the index 1, and the 
singular manifold in the region Dk by the index 2. 

Index 1. In a game of pursuit by n pursuers at the instant of time t we have a game of pursuit 
by k pursuers, where k d n, if J& and J._I exist such that 

rtt. Xl@), rw)=g;k ~(xi7Y’o)<r~~_k ~h,YL(f)) 
n 

where J,,.+ = i \ Jk, and we will write y(f) E Ok. 
We note one property of the regions Dk : D[ n D, f $, k, 1 c II. 

Index 2, In a game of pursuit by n pursuers at the instant of time t, y(t) belongs to the 
singular ma~fold S, if 

1. Y@)E Q, 
2. for a given Jk the subspaces W, and W, * (2.2) are defined and dim’CV, = dim W, *. 
For each region D& a singular manifold exists in which the piecewise-smooth programmed 

rn~i~n function can have a dis~ontin~ty. 
When k = n and y(t) E S,, there are two extremal aiming points 

unlike the regular case where the extremal aiming point is unique. 
When k c n and y(t) E Sk the intersection of L& and D, is the section of an n-dimensional 

sphere with a subspace of dimension dimL, and the power of the set of extremal aiming 
points is a continuum. 

4. AUXILIARY ASSERTIONS 

We will divide the interval [0, T] into N parts. We have fiti) = y(ti_$)+ yAt, where [0, 1”] = 
JQrfi+J, vi E [titi+J, vi = const and At is the diameter of the division. 

Consider the ith interval; we can put ti = 0, ti, = t. 
We will prove the following Lemmas l-3 for the case when k 3 2, y E S,, by considering the 

evader y in each subspace, defined by L,, and xi for the time interval [O, t]. 
Suppose r = d(x(O), ye), b and c are the lengths of the projections [xi(O), y*(O)] and [y(O), 

y*(O)], respectively, onto (n,(O), y(0)). 
It can be shown that Lemmas 1 and 2, which apply to the proof of the u-stability of the 

programmed maximin function (2.4), hold. 

Lemma 1, When tr # 0, v ES,, for any p, 0 if r > cl’, the following inequality is satisfied 

(r - pr)’ - (b - pr)2 2 (al- - at)2 - (c - or)” (r < min(b/p, c/p)) 

Here, and also in Lemmas 2,3, and 4, the subscript i on p is omitted. 
When t a min(blp, dp) an instant of time exists when the trajectory of motion of the evader 

intersects the subspace Lk (2.3) and the position lies in a singular manifold. Taking this instant 
of time as the initial instant we will use the following lemma. 

Lemma 2. When v = 4 v E S, for any p, aif r > dI, the following inequality is satisfied 
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(r - pry - (b - pry 3 (OT - &t < b/P) 

When t ) b/p, the instant when the trajectory of the pursuer intersects the subspace Lk will 
be taken as the initial instant and we will use Lemma 2. 

The geometrical meaning of the above lemmas is as follows. If the evader chooses non-zero 
and zero controls, which do not reduce to a position with a singular manifold, we obtain non- 
zero controls of the pursuers which retain a position on the singular manifold such that the 
programmed maximin function does not increase. 

We will assume that the OX axis passing through x,(O) is perpendicular to Lk, 
We will denote by a and /I the angles between the controls u and u and OX. We will prove 

the following lemma: for a position lying on the singular manifold and any controls of the 
evader, the controls of the pursuers are obtained such that the programmed maximin function 
does not increase. The position can then both converge with the singular manifold and remain 
on it. 

Lemma 3. For any p, CT, /.il we obtain a, such that d(.q(t), y(t)) 6&(O), y(O))-@ when 
Y (0) E & 

The choice of a, such that 

( 
arcsin(op” sin@), if crp-‘siilp~ 1 

q= CX;, if ap-‘sir@>1 (4.1) 

proves the lemma. 

Lemma 4. Suppose y(t) E Dk, B,~,_,,(y(r)) n Lk = (y*(t)] f: Qi and a 3 0 is a number such that 
(Y * (t)l C uiBu+p(T-t)~xi~r))’ men 47(~-tjW)) c uiBa+p(*-t)(xi(t))* 

Lemma 4 reflects the fact that if the region reached by the evader, which lies in the region 
Ok, intersects the subspace Lk in a certain set of points, it is sufficient to cover only this set 
with spheres with centres coinciding with the positions of the pursuers, in order to cover the 
whole region that the evader reaches. 

5. THE PROPERTY OF u-STABILITY OF THE PROGRAMMED MAXIMIN FUNCTION 

For i=2 the programmed maximin function is identical with the value function of the game [3-51. 
Suppose that for a game of n - 1 pursuit (n B 3) the programmed maximin function (2.1) is identical with 

the value function of the game. Then in Assertions 1 and 2 we will prove that the programmed maximin 
function is the value of the game of pursuit of “n after one”. 

Asserfion 1. The programmed maximin function is u-stable in the singular manifold. 

Proof. Consider the time interval [O, t]. Suppose y(O) ES,, u =const. By our assumption, for all the 

regions Dk (k c n- 1) we obtain the value function of the game identical with (2.1). We will introduce a 
fictitious evader, obtained from the actual evader by rotating about L, by the angle between y and x, in 
W” * and lying in a plane defined by xr and L,. The extremal aimiig point of the actual evader is identical 
with the extremal aiming point of the fictitious evader. 

The equation of the ith pursuer is constructed from the fictitious evader using Lemmas l-3, and it is 
also suitable for the actual evader since information only on the extremal aiming point is used. 

If y(T) E D,, then by Lemma 4 at the instant I the following covering is carried out 

B,(T-r) OJ (0) E u ” @+j2i(T-t)OCi(r)) B (5.1) 
i=l 
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under the condition that, at the initial instant of time, the following condition has been satisfied 

If in the interval 10, t] there is an instant t1 such that y(T)oD,,_,, then by splitting the interval into 
subintervals [O, r]=[O, r,]u[t,, t] we can choose in the first subinterval the controls of the pursuers 

corresponding to the game “n after one”, and in the second game %-1 after one”. The covering (5.1), 

which is carried out at the instant tit also occurs at the instant t for y(r) E Q_, (similarly for y(f) E D,,, 
k c n- l), which also denotes the u-stability of the programmed maximin function. Putting t= T in (5.1) 

we note that the value function of the game is identical with the constant a. 

Asserfion 2. The programmed maximin function is u-stable over all the space of the game. 

In order to prove this, one need only check the u-stability of the programmed maximin function in the 

regular region. However, this case can easily be reduced to Assertion 1 by introducing a fictitious evader. 
For any actual evader one can obtain a fictitious evader which satisfies the following requirements: 

1. the fictitious evader is in the singular manifold at the initial instant of time; 
2. the extremal aiming point of the fictitious and actual evaders are identical at the initial and final 

instants of time in the interval [O, t]; 
3. the fictitio~ evader is displaced by not more than ptafter a time t. 
Using Assertion 1, we obtain the u-stability of the programmed maximin function in the regular region 

and in the whole of space. 
Thus, the programmed maximin function is identical with the value function of the game over the 

whole space, since the programmed maximin function possesses the property of vstability by virtue of the 

linearity of system (1.1) and (1.2). 

Notes. 1. The condition r > oT of Lemmas l-3 must be satisfied for all xi, which only occurs for similar 

arbitrary pursuers or different types of pursuers which exceed the velocity of the evader. 
2. When there are different constraints on the velocity of the pursuers it is necessary to add the 

following: if at the initial instant of time the exact covering (5.1) is satisfied, then at the following instant 
of time, for non-opt~al motion of the evader (i.e. not at the extremal aiming point), for example, along 
the singular manifold, the comb~ation of spheres with centres at x, covers a sphere that is strictly greater 
than the region which the evader reaches. In this case, the interval [0, r] can be divided into smaller 
intervals in each of which we assume the extremal aiming point to be fixed, while the covering (5.1) is 
exact and Lemmas l-4 are used. 

3. The value function of the game is positive, but if at the initial instant of time r = pT for pursuers with 

an excessive speed, the value function of the game is zero, i.e. point capture occurs. 

Example. Consider a differential game of group pursuit of “three after one” in a three-dimensional 

Euclidean space. 
Functional (1.3) takes the form 

Here x, = (.$, x;, x:), (i=l, 2,3), y=(y”, yy, y’). 
We will fii those initial positions of the pursuers which form a non-degenerate triangle. The evader is 

in one of the regions D, (i = 1, 2, 3) (Fig. 1). The regions DI and D, exist in all cases of the mutual 
position of the players for any constraints on the control. The region D3 always exists when the triangle 

formed by the pursuers is acute-angled. 
We will introduce a system of coordinates such that x1, xZ, x, lie in the XUY plane, and the axis of 
coordinates passes through the centre of the circle described around the triangle, forming a right triplet 
with XOY. 

The region Ds at the instant of time t is bounded by rotation around the axis of coordinates of an inner 
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Fto. 1. 

Fm.3. 

I 
F1o.2 

Fxo .4. 

Nikomed concoid of radius a(T - t) relative to the point which coincides with arbitrary x, (i = 1, 2, 3) and 

the axis of coordinates (Fig. 2). 

To construct the region D, we will choose an arbitrary side of the triangle x1%x3, for example, [x1x2]. 
The part of the region D2 is bounded by rotation about the side [x1x2] of two inner Nikomed concoids of 
radius o(T-r) with respect to the middle of the perpendicular to [x1x2] and correspondingly the points 

which coincide with x1 and x,. In a similar way, by choosing the remaining sides of the triangle we obtain 

the whole region Z& (Fig. 3). 

The part of the space not belonging to D, and D2 belongs to Dl (Fig. 1). 

The singular manifold in region D3 is characterized by the fact that the z coordinates of all the players 
are equal, and the singular manifold of region D2 is characterized by the fact that the evader belongs to 
an arbitrary side of the triangle x,x,x,, but in this case, unlike the problem considered earlier in [6], the 
evader has not one optimal motion but a continuum. Coincidence of the coordinates of the evader and the 

pursuer describes the singular manifold in region D, and here the optimal motion of the evader is not 

unique. 
The programmed maximin function (2.4) can be written as follows: 

r(t,xf)=mi.nfrf(t,xf) (i=1,2,3) 

~(t, xr)= ((~7 _ $ + (Ok (T- t)z - @x)1 - (JJ)~)‘)~ + (x; I1 + (Yv*)‘)’ - p(T- t) (i= 1, 2, 3) 

We can check for system (1.1) and (1.2) that the Bellman-Isaacs equation is satisfied in the regular 
region D3 and that the programmed maximin function is identical with the payoff function at the instant 
of completion. 

Denoting the angles between the instantaneous speeds of players y and x, and the OX, OY and OZ 
areas, respectively by /I’, /3”, /I’ and a;, a;, a: we can rewrite the controls in the form 



Construction of the value function in a game of approach with several pursuers 65 

uy = pcosar, uf = pcosa~, I$ = pcosaf 

““~OCOSS 
x 

, “Y = orosuy, vz = ocosBZ 

By choosing the angles as in Assertions 1 and 2 in accordance with (4.1), we can guarantee that there is 
no increase in the programmed maximii function. For the evader situated in 4, we have a; = 4 =a:. 

The extremal aimings of all the players at one of the points of the set Iy *] with maximal and constant 
controls are optimal strategies of all the players, and alI the singular manifolds are dispersion surfaces. 

The form of the level surface of the value of the game is shown in Fig. 4. 
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